Model Ensemble for Click Prediction in Bing Search Ads
نویسندگان
چکیده
Accurate estimation of the click-through rate (CTR) in sponsored ads significantly impacts the user search experience and businesses’ revenue, even 0.1% of accuracy improvement would yield greater earnings in the hundreds of millions of dollars. CTR prediction is generally formulated as a supervised classification problem. In this paper, we share our experience and learning on model ensemble design and our innovation. Specifically, we present 8 ensemble methods and evaluate them on our production data. Boosting neural networks with gradient boosting decision trees turns out to be the best. With larger training data, there is a nearly 0.9% AUC improvement in offline testing and significant click yield gains in online traffic. In addition, we share our experience and learning on improving the quality of training.
منابع مشابه
An Ensemble Click Model for Web Document Ranking
Annually, web search engine providers spend more and more money on documents ranking in search engines result pages (SERP). Click models provide advantageous information for ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to create a hybrid click model; the first module is a PGM-based click model, the second module in a d...
متن کاملMissing Click History in Sponsored Search: A Generative Modeling Solution
A fundamental problem in sponsored search advertising is the estimation of probability of click for ads displayed in response to search queries. The historical click-through rate (CTR) is one of the most important predictors of the click, and extracted at multiple resolutions of the query-ad hierarchy. However, the new ads do not have any click history, and even the existing ads might miss hist...
متن کاملSequential Click Prediction for Sponsored Search with Recurrent Neural Networks
Click prediction is one of the fundamental problems in sponsored search. Most of existing studies took advantage of machine learning approaches to predict ad click for each event of ad view independently. However, as observed in the real-world sponsored search system, user’s behaviors on ads yield high dependency on how the user behaved along with the past time, especially in terms of what quer...
متن کاملConstructing Social Intentional Corpora to Predict Click-Through Rate for Search Advertising
In the beginning, search engines provide placements next to the original search results for advertisers on specific keywords. Since users often search for their interests or purchasing decision, timely presenting proper advertisements to users will encourage them to click on search ads. With the rapid growth of advertising, there is a bidding mechanism that advertisers need to bid keywords on t...
متن کاملDeeply Supervised Semantic Model for Click-Through Rate Prediction in Sponsored Search
In sponsored search it is critical to match ads that are relevant to a query and to accurately predict their likelihood of being clicked. Commercial search engines typically use machine learning models for both query-ad relevance matching and click-through-rate (CTR) prediction. However, matching models are based on the similarity between a query and an ad, ignoring the fact that a retrieved ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017